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I. INTRODUCTION 

The advent  of  high power pulsed lasers now makes it p o s s i b l e . t o  
hea t  a dense  plasma to  extremely  high  temperatures.  Because  of  the 
laser's a b i l i t y   t o  create plasmas t h a t  are both  very  hot  and  dense, 
th i s   type  of hea t ing  is an attractive approach to   achieving a control-  
led  thermonuclear  reaction (CTR). However, ari impor tan t   l imi ta t ion  on 
t h e  maximum temperature   that  can be  created arises from t h e  plasma 
motion.  During t h e  laser pu l se   t he  plasma may begin   to  expand  and much 
of the  thermal  energy would be  converted  to   directed  kinet ic   energy of 
the  plasma  motion, as was f i r s t  noted by  Basov' and Dawson2. 

The r ecen t  development  of  powerful  sub-nanosecond  Q-switched 
lasers and  mode-locked picosecond lasers makes i t  p o s s i b l e   t o  overcome 
t h e  problem of expansion  during  the  heating  process.   For  appropriately 
s h o r t  laser pulses,  the  plasma  can  be  heated  to  thermonuclear  tempera- 
tures   before   s ignif icant   macroscopic   f luid  motion  begins .  The 
i r r a d i a t i o n  of a plasma by t h e s e   s h o r t  laser pulses  then becomes a 
s t a t iona ry   hea t ing  problem. 

A study  has  been made of the   s t a t iona ry   hea t ing  of a one-dimensional 
plasma  with an a r b i t r a r y   d e n s i t y   p r o f i l e .  The purpose of the   s tudy w a s  
to   de te rmine   the   f ine   de ta i l s  of the  heat ing  process  as wel l  as the  
ove ra l l   f ea tu re s .  The s p a t i a l   d i s t r i b u t i o n  of  temperature is one d e t a i l  
of i n t e r e s t  which w i l l  hold  the key t o   t h e  plasma  motion t h a t  w i l l  
follow  the  heating  process.  Another  detail of i n t e r e s t  is t h e   f r a c t i o n  
of laser energy  that  is l o s t  by r e f l e c t i o n  from t h e  nonuniform  plasma. 

Several t h e o r e t i c a l   i n v e s t i g a t i o n s  of laser plasma  heating  have 
been made; but most models  have  neglected  the  f ine  details  and  concen- 
t r a t e d  on over-all   results,   e.g. ,   the  temperature  achieved.  Previous 
invest igat ions  have  a lso  used t i m e  scales i n  which  plasma  motion is 
s i g n i f i c a n t .  

A study by Fader'  considered  the  expansion of a sphe r i ca l ly  sym- 
metric plasma s u b j e c t   t o  Q-switched laser rad ia t ion .  The expansion  of 
. t he  plasma w a s  found t o   b e  a major   l imitat ion on the  temperatures 
achieved  according  to  both  numerical and ana ly t ica l   ca lcu la t ion .   This  
study assumed s p a t i a l l y  uniform  absorption  throughout  the  plasma. 

A study by Kidder2  also  considered  the  motion  of a sphe r i ca l ly  
symmetric plasma  but   with  i r radiat ion by a r ad ia l ly   conve rgen t   l i gh t  
pulse. H i s  numerical   study  also showed t h e   l i m i t a t i o n  of  expansion on 
the  temperatures  achieved. 

Dawson, e t  al., s tud ied   t he   ove r -a l l   abso rp t ion   cha rac t e r i s t i c s  of 
a one-dimensional  nonuniform  overdense  plasma.  Without  studying  the 
d e t a i l s  of absorption,  they  found  the  length of plasma necessary  to  a&- 
quately  absorb  the  radiat ion.  



This  paper  also  uses a one-dimensional  nonuniform  plasma  and con- 
s i d e r s   t h e   e n t i r e   h e a t i n g   p r o c e s s   f o r  time scales s u f f i c i e n t l y   s h o r t  
t h a t  plasma  motion  can  be  neglected. The r e s u l t s   i n d i c a t e   t h a t   f o r  a 
thick  underdense  region, a hea t ing  wave propagates  into  the  plasma;  and 
f o r  a thin  underdense  region,  the  heating is simultaneous--  with an ex- 
treme hot   spot   appearing at t h e  critical dens i ty  (where t h e  plasma f r e -  
quency equals   the laser frequency). The hea t ing  wave phenomena has  been 
mentioned  before by Zel'dovich  and Raiser4 and arose   in   the   numer ica l  
s t u d i e s  of  Kidder2  and t h e   a n a l y t i c a l   s t u d i e s  of Rehm. 

Another r e s u l t  is t h a t  maximum temperature  or  other  optimizing  condi- 
tions  can  be  achieved by p rope r   t a i l o r ing  of t h e   i n i t i a l   d e n s i t y   p r o f i l e  
and  plasma s i z e .  The idea  of t a i l o r i n i   t h e  plasma t o   o p t i m i z e   t h e   r e s u l t s  
w a s  f i r s t  suggested by Daiber, e t  al., and later in   ano the r  scheme by 
Lub i n .  

11. MODEL 

The plasma is taken  to  be a one-dimensional  nonuniform fu l ly   i on ized  
gas   be ing   i r rad ia ted  by a laser of  wavelength X, a t  normal  incidence. 
Figure 1 is  a diagram  of the  configuration. The i n i t i a l   d e n s i t y  and 
temperature   prof i les  are a r b i t r a r y   t o   t h e   e x t e n t   t h a t  a fu l ly   ion ized  
gas i s  a valid  assumption. The plasma is assumed to  be a dense  ideal  
gas  mixture  of  electrons and ions  such  that   there  is charge   neut ra l i ty  
a t  every   po in t   for  a l l  times. 

The one-dimensional  two-temperature  continuum  equations w i l l  be 
used  with  the  addition  of terms account ing  for   radiat ive  energy  addi t ion.  
The electromagnetic  force w i l l  be  neglected  since its e f f e c t  is small 
compared t o  t h e   e f f e c t  of thermal  forces.  Also, a form of t h e   r a d i a t i v e  
t ransfer   equat ion is added  which neglects  thermal  and  bremsstrahlung 
r ad ia t ion .  The rad ia t ive   t ransfer   equa t ion  is simplified  to  account  only 
f o r  laser r ad ia t ion   en te r ing   t he  plasma (+ x d i rec t ion )  and  does  not  take 
in to   account   the   re f lec t ion  of r a d i a t i o n   t h a t  would occur  if  the  plasma 
is overdense  (where  the  plasma  frequency  equals  the laser frequency). 
I f   t h e  laser r ad ia t ion   does   pene t r a t e   t o   t h i s  "critical density,"  then 
appropr i a t e   ca l cu la t ions  must be made to   accoun t   fo r   t he   r e f l ec t ed   l i gh t .  
The absorpt ion  coeff ic ient   used is t h a t  of inverse  bremsstrahlung. 

I f   t h e  plasma is overdense,  then x = R w i l l  de f ine   t he   po in t  a t  
which the  cr i t ical  dens i ty  pc occurs.  If  the  plasma is not  overdense 
at: any point ,   then x = R g ives   the  rear edge  of  the  plasma. 

Non-Dimensionalization Scheme 

The length scale used i s  R . The time scale is  t h e  laser pulse 
length  t since  only  the  heat ing  process  is  considered i n   t h i s  paper. 
Hence, t i e  independent variables, dimensionless  distance and time will 
always  be  of  order  one  or less. The temperature scale used f o r  both 
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e lec t ron  and ion  temperature is To and is defined as the  temperature 
change t h a t  would arise i f  a l l  the  energy i n   t h e  laser pulse  were add- 
ed  uniformly  to a cri t ical  density  plasma of thickness R . Then 

where Jo/A is the  energy  contained  in   the laser pulse   per   un i t  area of 
plasma, k i s  the'Boltzmann  constant  and  nec i s  the  cr i t ical  e l ec t ron  
dens i ty  (where  plasma  frequency  equals laser frequency)  given by 

2 
4r EOmec 

n ec = 2 1  
x0 e 

The dens i ty  scale is  t h e   c r i t i c a l   d e n s i t y ,  i .ec ,  the  mass dens i ty  which 
cor responds   to   the   c r i t i ca l   e lec t ron   dens i ty ,  pc = minec/Z. The pres- 
s u r e   s c a l e  po is  t h e   p r e s s u r e   t h a t  would arise i n  a per fec t   gas  a t  tempera- 
t u r e  To and dens i ty  pc. The ve loc i ty  scale is the   acous t ic   speed   for  a 
perfect   gas  a t  po and pc, i.e., ao2 = 5p0/3pc. The e l ec t ron  and ion  
en t ropies  are scaled  using  the  constant  volume s p e c i f i c   h e a t .  The absorp- 
t ion   coef f ic ien t ,   e lec t ron- ion   equi l ibra t ion  t i m e ,  and the   e lec t ron  and 
ion  thermal  conduction  coefficients are taken from Spitzer.'  These are 
a l l  based upon a scale   using a dens i ty  pc and a temperature To ; 

KO 
= constant pc /To 3/2 

t = constant To /PC 3/2 

eq0 

Ke, io = constant e,i To 5 / 2  

The r a d i a t i o n   i n t e n s i t y  scale is the  average laser in t ens i ty   du r ing   t he  
pulse.  

Io = J o / A t p  

Summarizing, the  dimensionless  variables are: 

Distance y = x/R Absorption 
c o e f f i c i e n t  K = K / K ~  

Time T = t/tp Fluid 
ve loc i ty  U = u/ao 
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Density r = PIPc Elec t ron  
entropy 

Pressure  II = PIPo Ion 
entropy 

Electron 
temperature ee = T, /T~  I n t e n s i t y  

Ion 
temperature ei = T ~ / T ~  

ae = se/cv 

ai = Si/CV 

i = I/Io 

Parameters 

Using the  non-dimensionalization scheme described,  f ive  parameters 
arise which con t ro l   t he  plasma  behavior. The f i r s t  parameter is 

~ = a t / R  
O P  

E is t h e   r a t i o  of  the laser pulse  time t o   t h e  time f o r   a n   a c o u s t i c  wave 
t o  traverse the  underdense  region.  If E << 1, then  the  pulse   length is 
so s h o r t   t h a t   e s s e n t i a l l y  no  plasma  motion  occurs. I f  E 0(1), then 
significant  motion  occurs  before  the  pulse  ends.  

a = K ~ R  (9) 

a is t h e   r a t i o  of the  thickness  of  the  underdense  region  to  the  absorp- 
t ion   l ength   sca le .  The absorpt ion  length is the   r ec ip roca l  of t h e  
absorp t ion   coef f ic ien t .   I f  a << 1, then  the  plasma is  near ly   t ransparent  
t o   t he   r ad ia t ion .  If t h e  plasma is  overdense,   then  the  radiat ion w i l l  be 
r e f l e c t e d  and t h e   r e f l e c t e d  beam w i l l  be   negl igibly  reduced  in   intensi ty .  
The r e s u l t  w i l l  be   to   effect ively  double   the  absorpt ion  coeff ic ient .   I f  
a >> 1, then  the  plasma is near ly  opaque t o   t h e   r a d i a t i o n .  

A = t / t  
P eq, 

X is t h e   r a t i o  of t he   pu l se  time to   the   e lec t ron- ion   equi l ibra t ion  t i m e .  
If X << 1, then   the   e lec t rons  w i l l  tend  to  be  heated by inverse  
bremsstrahlung;  but  the  ions w i l l  remain  nearly  frozen  during  the laser 
pulse .   I f  A >> 1, then   the   e lec t ron  and ion  temperatures w i l l  be   tha 
same. 
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q e , i  is ( f o r - e l e c t r o n s  and i o n s   r e s p e c t i v e l y )   t h e   r a t i o  of  pulse t i m e  t o  
t he  t i m e  f o r  a thermal   diffusion wave t o  traverse the  underdense  region. 
Then, f o r  example, i f  ne  << 1, the re  w i l l  be  very l i t t l e  thermal condttc- 
t i o n  by the   e lec t rons   dur ing   the  laser pulse .   I f  qe >> 1, the  thermal 
conduction w i l l  be  strong,  tending  to  equalize  the  temperature of t h e  
plasma. 

Equations 

The governing  equations i n  dimensionless  form are 

- ai + o r ~ i  = o 
a Y  

213, ‘e 

213, ‘1 

Be = 5 

‘i = r  
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The equat ion  for   absorpt ion  coeff ic ient   (17)   breaks down f o r   d e n s i t i e s  
very   near   the  cr i t ical  dens i ty  (C = 1). There is a c t u a l l y  an extremely 
h igh   va lue   o f   the   absorp t ion   coef f ic ien t  at tha t   po in t ,   bu t   no t  an i n f i n i t y .  
Hence, s o l u t i o n s   t h a t  are found w i l l  probably  have a s i n g u l a r i t y  a t  t h a t  
point  and  thus  cannot  be  trusted  €or 5 very  near one.   This  singularity 
w i l l  usua l ly   be   in tegrable  so t h a t   i n t e g r a t i o n s   w i t h   r e s p e c t   t o  y over 
t h e   s i n g u l a r i t y  w i l l  descr ibe   the  actual case f a i r l y   a c c u r a t e l y .  

The i n i t i a l   c o n d i t i o n s  w i l l  be   an   in i t ia l   t empera ture  and an i n i t i a l  
dens i ty   p ro f i l e .  The boundary  conditions w i l l  be on t h e   i n t e n s i t y ;   t h e  
i n t e n s i t y   e n t e r i n g   t h e  plasma w i l l  be d@/dT where @ is t h e   f r a c t i o n  of the  
laser energy  delivered up t o  time T ; 

1 t 
= -J I ( t ) d t  

Jo/A 0 

\ 

so t h a t  = 0 a t  T = 0 and @ = 1 a t  T = 1 ( the  end  of the  pulse) .  

111. EQUATIONS  FOR A STATIONARY FROZEN 

NON-THERMALLY CONDUCTING PLASMA 

For sufficiently  rapid  energy  addition,  the  plasma may b e   s i g n i f i c a n t l y  
heated  before  the random thermal  energy  begins  to  change  appreciably  to  or- 
dered  fluid  motion. The heating may be  rapid enough t h a t   t h e   d i f f u s i n g   e f -  
f e c t  of  thermal  conductivity w i l l  not  have a s i g n i f i c a n t   e f f e c t .  Also, 
with   suf f ic ien t ly   rap id   hea t ing ,   the   equi l ibra t ion   processes  whereby the  
hea ted   e lec t rons   t ransfer   the i r   energy   to   the   ions  w i l l  not  have  proceeded 
t o  any s i g n i f i c a n t   e x t e n t .  

The problem  studied  in  this  paper is the  case where a l l  of  these con- 
ditions  appear  simultaneously. Then the   hea t ing  is e s s e n t i a l l y  a s t a t iona ry ,  
non-thermally  conducting  process whereby  energy is  t r ans fe r r ed  from a beam 
of l i g h t   t o   t h e   e l e c t r o n s   i n   t h e  plasma. No energy i s  t r ans fe r r ed  between 
e l ec t rons  by  thermal  conduction,  and  no  energy is t r ans fe r r ed   t o   t he   i ons ,  
e i t h e r  by   e lec t ron- ion   equi l ibra t ion   or  by ordered  plasma  motion. 

The cases i n  which  plasma  motion,  thermal  conduction,  and  electron- 
i o n   e q u i l i b r a t i o n  become s ign i f i can t   du r ing   t he  laser pulse  form  problems 
f o r  later study.  Another  interesting  problem  for later study is t h e  be- 
havior of t h e  plasma a f t e r   be ing   hea t ed   i n  a stationary,   non-thermally 
conducting,  nonequilibrium manner ( a s   s t u d i e d   i n   t h i s   p a p e r ) .  

The requirement  for a s t a t i o n a r y  plasma is t h a t  E << 1, and f o r  a non- 
conducting  plasma, n e , i  << 1. Also, f o r  a plasma i n  which the   e l ec t ron  
temperature i s  l a r g e  compared to   the  ion  temperature ,   then AOe/8i CC 1 is 
required. 

For  the l i m i t  E, h ,  hee/8i ,   qe , i  + 0, the  governing  equations  simplify 
considerably. The continuity  equation  (12) becomes 3</aT = 0 so t h a t   t h e  
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dens i ty   p rof i le   remains   s ta t ionary  = S(y). The momentum equation (13) 
becomes aU/& = 0 so that   the  velocity  remains  zero  throughout  the  pto- 
.cess. The electron  entropy  equat ion (14) becomes 

The rad ia t ive   t ransfer   equa t ion  ( 1 6 )  remains  the same, as does  the ab- 
sorp t ion   coef f ic ien t   (17) ,  and a l l  three  equations of state (18), (19), 
and ( 2 0 ) .  The electron  entropy  equat ion ( 2 2 )  p l u s   t h e   r a d i a t i v e  trans- 
fer   equa t ion   (16) ,   the   absorp t ion   coef f ic ien t  (17) ,  and  one  equation  of 
state (19)  form a complete set of four   equa t ions   in   four  unknowns. 

These can be  reduced  to  a single   equat ion  for   e lectron  temperature .  
Solving  (19) f o r  oe, taking  the time de r iva t ive  and e l imina t ing  
aOe/aT using ( 2 2 )  y i e l d s  

Then so lv ing   fo r  i and  using  (17) 
c 1 9  

D i f f e r e n t i a t i n g   w i t h   r e s p e c t   t o  y 

Combining ( 2 4 )  and ( 2 5 )  using (16) t o   e l i m i n a t e  
K y i e l d s  

i and (17) to   e l imina te  

which  can  be  immediately integrated  once on T t o   g ive  

f ( y )  arises out   o f   in tegra t ing   wi th   respec t   to  T and is determined by 
t h e   i n i t i a l   c o n d i t i o n s .   I f   t h e   i n i t i a l   c o n d i t i o n  is ee(y,0) = 8eo(y) ,  
then ( 2 6 )  becomes 



This i s  the  equation  governing  electron  temperature  for a s t a t iona ry ,  
frozen,  non-thermally  conducting  plasma. 

It is noteworthy  that   al though  the  dependent  variable  8e is  a func t ion  
of both  y,  and T, (27) is e s s e n t i a l l y   a n   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n   i n  
€le i n   t h a t   o n l y   t h e   p a r t i a l   d e r i v a t i v e   w i t h   r e s p e c t   t o  y appears. The 
only  precaution  in  considering  (27) as an   ord inary   d i f fe ren t ia l   equa t ion  
is t h a t   i n   t h e   s o l u t i o n ,   a r b i t r a r y   f u n c t i o n s  of -c arise ins t ead  of con- 
s t a n t s   ( a s   i n   t h e   c a s e  of   an  ordinary  different ia l   equat ion) .  

In   order   to   formulate  a w e l l  posed  problem,  appropriate  boundary 
and i n i t i a l   c o n d i t i o n s  must accompany the  governing  equation  (27). The 
i n i t i a l  condition i s  

The d e n s i t y   p r o f i l e  <(y) remains  the same throughout  the  stationary  pro- 
cess, and  hence i s  the  same as t h e   i n i t i a l   d e n s i t y   p r o f i l e .  

The bas i c  boundary  condition is t h a t   t h e   i n t e n s i t y  a t  the   ou te r  
edge of t he  plasma equa l s   t he   i n t ens i ty   de l ive red  by the  laser, 

i(O,-c) = d@/dT 

But a boundary  condition on temperature 8, must  be  developed.  Equations 
(17)  and (23) combine to   g ive  

and t h e  boundary  condition is  

8 



d@ 
dT 
- 

y = o  

Equations (281, and (29) o r  (30) 

toge ther   wi th   the   govern ing   d i f fe ren t ia l   equa t ion  (27) form a w e l l  
posed  problem. 

I V .  DISCUSSION OF  PARAMETERS 

It is important   to  know  when a stationary  frozen  non-thermally con- 
ducting  plasma  actually arises, i . e . ,  under  what  conditions E, X ,  q e , i < < l .  
Certainly  not  a l l  regimes of i n t e r e s t  w i l l  s a t i s f y   t h e s e   c r i t e r i a .  

One of the  factors   determining  these  parameters  i s  t h e   s i z e  and 
dens i ty  of the  plasma.  For  this  discussion,  the plasma i s  assumed to   be 
overdense ( i .e. ,  t h e  plasma  frequency a t  the   po in t  of h ighes t   dens i ty  is 
greater   than  the laser frequency).  Furthermore,  to  simulate a t y p i c a l  
nonuniform plasma, t he   dens i ty  is assumed t o  rise l i n e a r l y  from  zero a t  
the  edge of t h e  plasma  and  remain l i n e a r  a t  least t o   t h e   c r i t i c a l   d e n s i t y  
po in t  (where  plasma  frequency  equals laser frequency). 

E << 1. From ( 8 ) ,  E = a. t p / R .  R depends on both  the  density  and 
t h e   c r i t i c a l   d e n s i t y  (which depends  on  the laser frequency). 

2 2 n 47r Eom c ec 1 

One e 
R - -  - [  2 

The charac te r i s t ic   speed  of  sound a0 depends in   t he   u sua l  way on the  
charac te r i s t ic   t empera ture  To. To becomes, applying (31): 

Then E can  be  wri t ten 

9 



with Jo/A i n   J o u l e s   p e r   s q u a r e  meter, ho i n  microns, h e  i n   e l e c t r o n s  
per meter t o   t h e   f o u r t h ,  and t p   i n  seconds. 

X << 1. Using Spi tzer ’s   e lec t ron- ion   equi l ibra t ion  time with 
(10) 

n e , i  << 1. Only the   e lec t ron   thermal   conduct iv i ty  i s  considered 
s ince  i t  is  much la rger   than   ion  thermal conductivity.  Using Sp i t ze r ’ s  
thermal  conduction  coefficient , (11) becomes 

Then the   pu l se  t i m e  tP, laser energy  per   uni t  area Jo/A,  laser wave- 
length Ao, and e l ec t ron   dens i ty   g rad ien t  Vne arise as t h e  key  parameters 
of t h e  problem.  With a p a r t i c u l a r  laser pu l se   l eng th   t p  and  wavelength 

the  various  regimes  can  be.shown  graphically as a func t ion  of Jo/A 
and Vne. Figures  2,  3,  4,  and  5 show  when E, X ,  and ne are l a rge   o r  
small f o r   t h e   c a s e s   t p  = , sec. and A 0  = 1.061.1, 10.61-1. 

The shaded  regions i n   F i g u r e s  2-5 represent   condi t ions   for  which E, 
ne, X < 1. Now t h e   v a l i d i t y  of a stationary  frozen  nonconducting  solu- 
t ion  found w i l l  no t   necessa r i ly   be   va l id   nea r   t he   l i nes  bounding the  
shaded  region. 

It is not  always .enough for   the   parameters   to   be  small. I f   t h e  
non-dimensional  temperature i s  not  of  order  one,  or  even i f   t h e   f i r s t  
or   second  der ivat ives   take  on  values   not  of order  one,   then  the  solu- 
t i o n  may be   va l id  where  not  expected and may be   inva l id  where not  expected. 
For  example, i f   t h e r e  is a large  temperature   gradient  a t  some l o c a l   p o i n t ,  
then  significant  thermal  conduction may occur a t  tha t   po in t   even  though 
the  remainder  of  the  plasma i s  nonconducting. The f rozen   ion   condi t ion  
can  also  break down while X is small. I f   the   e lec t ron   tempera ture  is much 
greater  than  the  ion  temperature,   then  X8e/8i (which appears   in   14)  is not 
necessar i ly  small even  though X may be small. 

Thus,  once  having  solved  the  stationary  frozen  non-thermal  conducting 
case,  i t  will be  necessary  to  look a t  t h e s e   e f f e c t s  and  re-evaluate  the 
regimes i n  which the   so lu t ion  is va l id .  

It is  of i n t e r e s t  a t  t h i s   p o i n t   t o   c a l c u l a t e   t h e   p a r a m e t e r  a. The 
so lu t ion  may take  on   w ide ly   d i f f e r ing   cha rac t e r   fo r   d i f f e ren t   va lues  of 
a. From (9) 

10 



V. ANALYTICAL SOLUTION 

A study  of  the  governing  equations shows t h a t   t h e   n a t u r e  of t h e  
heating  depends  on  the  size  of  the  parameter a. a large  corresponds 
t o  Vne s u f f i c i e n t l y  small (such t h a t   t h e  underdense  portion  of  the 
plasma is  o p t i c a l l y   t h i c k ) .  The result is a "heating wave" process 
whereby success ive   l ayers  are hea ted   un t i l   they  become nearly  t rans-  
parent ,   a l lowing  the beam t o   p e n e t r a t e   t o  a deeper   layer .  a small 
corresponds  to Vne su f f i c i en t ly   l a rge   t ha t   t he   unde rdense   po r t ion  of 
t h e  plasma i s  o p t i c a l l y   t h i n .  Then, t h e  whole  underdense  region is 
heated  simultaneously.  If a is  s u f f i c i e n t l y  small, t h e  laser w i l l  have 
only a very small hea t ing   e f fec t  on the  plasma  and  would be   i ne f f ec t ive  
in   the   p roduct ion  of a CTR plasma. 

I f   t he   i n i t i a l   t empera tu re  of the  plasma i s  much less than To, 
then  another small parameter  can  be  defined, 

where the  maximum value of  g(y) is  
parameter. The governing  equation 

chosen to  be  one  and 1.1 i s  the  small 
i s  now 

2 
+ [ee - 1.Ig1 

I f   t he   f i na l   e l ec t ron   t empera tu re  is i n   t h e  neighborhood of To, then 
8e w i l l  be of order  one. Hence, dur ing   the   ho t te r   s tages  of hea t ing ,  
t he  terms i n p  w i l l  b e   r e l a t i v e l y  small. I f   only terms of  order  one 
are considered, ( 3 8 )  becomes 

This i s  designated  the  "hot  equation". 

I n   t h e   i n i t i a l   s t a g e s  of the   hea t ing ,  8, w i l l  be  near e e O  which i s  
of order p. For t h i s  case O e  must be   resca led ;  8, = p8, where €),,.is of 
order  one. Then ( 3 8 )  becomes 
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This is designated  the  "cold  equation". 

Solving  the  problem  for ee0 << 1 involves  solving (39)  and (40)  
sepa ra t e ly  and then  appropriately  matching  the two s o l u t i o n s   t o   t h e  
boundary  condi t ions,   in i t ia l   condi t ions,  and t o  each  other.  Solving 
such a problem  where d i f f e r e n t   p a r t s  of t h e   s o l u t i o n  must  be  matched 
with  each  other   requires   the method of matched  asymptotic  expansions 
such as d e s c r i b e d   i n   d e t a i l  by Cole. l o  

Solu t ion  t o  t h e  Cold Equations 

A signif icant   parameter  a/$/ 2- appears i n   t he   co ld   equa t ion  (40)  
which may be   l a rge   o r  small depending  on  the  magnitude  of a. There are 
two important cases, a >> p3/ o r  a << 1-1312 . 

For a << v3I2, ( 4 0 )  becomes 

Rearranging  this  equation  gives 

which is in t eg ra t ed  

R(T)  is  an   a rb i t r a ry   func t ion  of '1: t h a t  arises i n   t h e  
r e spec t   t o   y .  R(T) is  found by applying  the  boundary 
(29) o r  (30). The r e s u l t  i s  

in t eg ra t ion   w i th  
condition, which is 
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which is in t eg rab le  

where "a" is  the   cons t an t  of i n t eg ra t ion .  "a" can  be  evaluated by ap- 
p ly ing   the  i n i t i a l  condition ( 2 8 ) .  Since @(O) '  = 0, a = 0 a l s o ,  and 
with (371, (41) becomes 

the   so lu t ion   to   the   co ld   equat ion  when a << 1-1 . 312 

For a >> p 1 2 ,  (40) becomes 3 

312 
S ince   the   der iva t ive  term i s  mul t ip l ied  by the  small parameter 1-1 /a, 
t h e  method of s ingular   per turba t ions  must be  used  for   the  solut ion.  
Thus t h e   s o l u t i o n   t o  ( 4 3 )  is  composed of an   ou ter   so lu t ion  00, where 
terms of order  p3I2/a  can  be  neglected,   and  an  inner  solution 0 i  , 
where the  temperature  changes  rapidly  in a very   shor t   d i s tance .  

The o u t e r   s o l u t i o n  is to   order   one,  

Finding  the  inner  solution  requires  expanding  the scale of y. 

where  yo =  yo(^) g ives   the   loca t ion   of   the   " t rans i t ion   l ayer . "  The o ther  
f u n c t i o n s   i n  ( 4 3 ) ,  g(y)  and  C(y), w i l l  be   constant   to   order   one  in   the 
scale of 7. For  example, 



. . . .. . . . . . . - . ~. . - . . . . . . 
I 

Then to   order   one,   the   inner   equat ion i s  

which  can  be  integrated 

m(T) is  the   func t ion  of t ime  that  arises i n   t h e   i n t e g r a t i o n   w i t h  respect 
t o  7. 

The i n t e g r a l   o n   t h e   l e f t   s i d e  of (46)  can  be  evaluated  using  ordi- 
nary  methods of in tegra t ion .   Conduct ing . the   in tegra t ion ,  (46)  becomes 

The complicated  expression  on  the  lef t   s ide ( 4 7 )  can  be  expanded fo r  
l imi t ing   va lues  of Oi/g. 

For  Oi/g  near  one, ( 4 7 )  can  be  solved as an  expansion  for   0i /g ,  

which i s  v a l i d   f o r  Oi/g - 1 << 1 
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As 7 goes t o   p o s i t i v e   i n f i n i t y ,  0% is seen  to   reduce  exponent ia l ly  
f a s t   t o  g which is j u s t   t h e   o u t e r   s o l u t i o n  (44). Thus the  inner   solu-  
t i o n  on   t he   pos i t i ve  'J s i d e  of t he   t r ans i t i on   l aye r .  

For  Oi/g much larger  than  one,  (47)  can  be  again  solved as an  ex- 
pansion, 

which is va l id   fo r   O i /g  >> 1. O i  is  seen   t o  grow v e r y   l a r g e   i f   g e t s  
large  negat ive.  Hence, fo r   l a rge   nega t ive  7 , (49)  must  be made t o  
match the   so lu t ion   to   the   ho t   equa t ion .  

So lu t ion   t o   t he  Hot Equation 

When the  energy i n   t h e  laser pulse  is l a r g e  compared t o   t h e   i n i t i a l  
i n t e r n a l  energy of the  plasma,  then  generally (8,) f i n a l / 8 e o  >> 1. I n  
t h i s  case (8e ) f ina l  is essent ia l ly   independent  of  Beo(y). The "hot  equa- 
t ion" (39) governs  this  case. Dividing  (39) by  8, g ives  a l i n e a r   f i r s t  
o rder   equa t ion   in   8e3/2 ,  

which  can  easily  be  solved to  g ive  

The func t ion   C(T)   tha t  arises i n   t h e   i n t e g r a t i o n   w i t h   r e s p e c t   t o  y i s  
determined  by  applying  the  boundary  condition (2s) or  (30),  

o r  

C(T) = a3j5 ($ CP + b) 3/5 



b is 
with 

e =  e 

the   cons t an t  of i n t e g r a t i o n  and will 
the   co ld   so lu t ion .  Hence, 

be  determined by the  matching 

The expression  (50) is only  physical ly  realistic when t h e  term i n   b r a c e s  
is grea te r   than   or   equa l   to   zero .  It is seen  that   g iven a T, t h i s  term 
is p o s i t i v e   f o r  y less than a ce r t a in   va lue .  

The phys ica l   imposs ib i l i t y  of i ts being  negative i s  s e e n   i f   t h e  re- 
su l t ing   express ion   for   i (y , - r )  i s  writ ten  using  (24).  

L 

The term i n   b r a c e s  
ing  negative which 
pos i t i ve   va lues  of 
used  elsewhere. 

I f  a 2 1 5  << 1, 
e ter 

becoming negat ive   cor responds   to   the   in tens i ty  becom- 
i s  impossible. The h o t   s o l u t i o n  is  on ly   va l id   fo r  
t h e  term i n  braces. The cold  solution  (45)  must  be 

(50)  can  be expanded with a 2 l 5  as t h e  small param- 

215 2/5 
e =  a 1/5  2 (> (9 + b)  2/5 + O(a4I5 ,p) e 

( 1  - c.1 

Matching Hot and Cold Solutions 

In   t he   va r ious   expres s ions   t ha t  compose the  solut ion  (42) ,   (44) ,  
(47),  and  (50),  various unknowns a r o s e :   b y  m('r)  and  yo('r).  These 
unknowns w i l l  be  determined by matching  the  different  components with 
each  other   for   the  possible   ranges of the  parameter a. 

The co ld   so lu t ion  i s  given by (42). The f i r s t  term i n   b r a c k e t s  
is of order  one  and  the  second term i s  of order a / p 5 I 2  and i s  rela- 
t i v e l y  small. Then (42)  can  be  expanded  about  g(y)  (where g is non- 
vanishing)  giving 

a <(9 
512 

g3/2 
eP = g +-  + 0WI-r 3/2) 

I-r 



It is immediately  seen  that a t  t h e  end of the   heat ing (@ = l), the 
term i n  a/p5i2  is still small compared t o  g and thus   there  is no need 
to   seek  a hot  regime. The temperature  8e  remains i n   t h e   c o l d  regime 
throughout  the laser pulse  and is  governed by (52). 

P h y s i c a l l y   t h i s  means that   very l i t t l e  o f . t h e  laser energy is ac- 
tual ly   absorbed by t h e  plasma. The whole  underdense  region is penetrated 
by the  heat ing so t h a t  a r e f l e c t e d   l i g h t  wave w i l l  arise. Since  the 
i n t e n s i t y  of t h e   r e f l e c t e d   l i g h t  w i l l  be  imperceptibly  diminished  due 
t o  weak absorption, i ts  e f f e c t  w i l l  be  to  roughly  double  the  heating 
due t o   t h e   i n c i d e n t   l i g h t ,  i .e . ,  t h e  term i n  ~ c / p ’ / ~  is doubled. 

Neglec t ing   the   e f fec t  of t h e   r e f l e c t e d  wave, the  temperature 
produced is 

This i s  shown schematical ly   in   Figure 6 f o r  a l i nea r   dens i ty   g rad ien t ,  
a cons tan t   in i t ia l   t empera ture ,  and f o r  a / p 5 / 2  = 1/10. 

The co ld   so lu t ion  is again  given by (42),   but 
a / ~ ’ / ~  dominates  the term of order  one.  Expanding 
a (where 0, 5 are non-vanishing)  gives 

now the  term i n  
about  the term i n  

T h i s  must  match wi th   t he  small a l i m i t  of the  hot   solut ion  (51) .  The 
matching r equ i r e s   t ha t   t he   cons t an t  b i n  (51)  be  zero. Once aga in   t he  
e n t i r e  underdense  region i s  heated  and a r e f l e c t e d   l i g h t  wave w i l l  a- 
rise whose i n t e n s i t y  w i l l  be  diminished l i t t l e  s ince  a i s  small. The 
e f f e c t  of t h e   r e f l e c t e d  wave then is  to  double  the  temperature i n  (54). 

Neglec t ing   the   e f fec t  of t h e   r e f l e c t e d  wave, a composite  solution 
can  be  constructed  which  possesses  the  features of t h e   h o t   s o l u t i o n  
(51)  and co ld   so lu t ion   (42) ,  



The co ld   so lu t ion  i s  given by an   ou te r   so lu t ion  (44) and a 
t r a n s i t i o n   l a y e r   s o l u t i o n  (47). . As was seen   before ,   the   t rans i t ion  
layer   [ located a t  yo (T) 3 .was matched w i t h   t h e   o u t e r   s o l u t i o n   f o r  
y >  yo(^). Now, (47) m u s t  be matched wi th   the   ho t   so lu t ion   (50) .  
The asymptotic l i m i t  f o r  Oi l a r g e  is given  by (49). The l i m i t  of 8e  
small in t h e   h o t   s o l u t i o n  must be   ca lcu la ted .  This matching  problem 
i s  demonstrated  schematically in Figure 7. in (50) achieves small 
values   near   the  point   where  the term in braces  vanishes.  Given T, t h e  
term in   b races   vanishes  a t  some  yw = y w ( ~ ) .  Expand t h e  scale of y i n  
the  neighborhood  of yw , 

where v is a small parameter  to  be  determined  in  the  matching. Then 
(50) becomes 

312 
This can  be  matched t o  (49) i f  v = v /a, m(T) = 0, and  yo(^:) = y w ( ~ ) ,  
i n  which case yv = 7 . 

A composi te   solut ion  val id   over  a l l  y cannot   be  wri t ten in t h i s  
case b u t   t h e  components can  be  summarized, 

+ log 

.18 



A "heating wave" is seen   t o  arise which separa tes   ho t   par t s  of t h e  plasma 
from cold  par ts .  The l o c a t i o n  of t h e  "wave," yW(-c) is g iven   impl ic i t ly  by 

(?a) 5 3/5 = - a  2/5 J'W'') C7l5dy 
2 

0 (1 - <)lI5 
(57) 

As Cp increases  from  zero,  yw is  seen  to  increase  monotonically  with Cp . 
t he  cr i t ical  d e n s i t y   v e r y   e a r l y   i n   t h e  laser pulse.  From t h a t  time on,  the 
laser heats   the  ent i re   underdense  port ion of t he  plasma  simultaneously  and 
the  temperature  profile  produced is  

I f  a is very small, t h e  wave travels .almost i n f i n i t e l y   f a s t  and reaches 

A "hot  spot" is generated  near 5 = 1, t h e  c r i t i ca l  density.  Of course  the 
or iginal   expression  for   absorpt ion  coeff ic ient   (17)   breaks down very  near 
5 = 1 and  remains f i n i t e  a t  the   c r i t i ca l   dens i ty .   Neve r the l e s s ,  a hot  spot 
i s  produced in   t h i s   r eg ion .   Th i s  l i m i t  can  be  labeled  the  "Simultaneous  heat- 
ing  case." I n   t h i s  case the  actual  temperature  produced w i l l  be  roughly 
twice tha t   g iven   in   (50)   s ince   the   l igh t  wave is  r e f l e c t e d  a t  t h e   c r i t i c a l  
dens i ty  and t r a v e l s  backwards  through the  region  with  very l i t t l e  i n t e n s i t y  
a t tenuat ion   [ see   (16) ] .  Hence, most  of t he  laser r ad ia t ion  i s  l o s t   t o  re- 
f l e c t i o n .  

I f  a is  la rger   than  a ce r t a in   va lue ,   t he  wave t r a v e l s  much more slowly 
and  does  not  even  reach  the c r i t i c a l   d e n s i t y  by the  end  of t he  laser pulse.  
Hence, i n   t h i s   c a s e   t h e r e  i s  no i so la ted   ho t   spot  as f o r  o! small. This l i m i t  
can  be  termed  the  "heating wave case' '   s ince a heating wave cont inues  to  move 
i n t o   t h e  plasma  throughout  the laser pulse.  The heating is  by no means "simul- 
taneous."   In   this   case a l l  of t h e  laser energy is absorbed. 

occur i n  one  of  four  regimes.  If a << p5/2, then  the  plasma is  on ly   s l i gh t ly  
heated and the  heat ing is  simultaneous. A weak hot   spot   occurs  a t  the  crit- 
i c a l   d e n s i t y  and  nearly a l l  t h e  laser energy is l o s t   t o   r e f l e c t i o n .   I f  

<< a << p3/2, t h e  plasma is  heated  to  temperatures much hot te r   than   the  
in i t i a l   t empera tu re   bu t  s t i l l  most of t he  laser energy is l o s t   t o   r e f l e c t i o n .  
The heating is simultaneous and a s t ronger   hot   spot   appears .   I f  
p3i2 << a << 1, a very  rapid  heat ing wave traverses  the  underdense  region  early 
i n   t h e   p u l s e .  After t h a t   t h e   h e a t i n g  i s  simultaneous  and a s ign i f i can t   ho t  
spot  appears a t  t h e  c r i t i ca l  dens i ty .  During the  simultaneous  heating  stage,  
a s i g n i f i c a n t   p a r t  of t he  laser energy is  l o s t   t o   r e f l e c t i o n   b u t   n o t  as much 
as in   t he   p rev ious   ca ses .   I f  a >> 1, a much slower  heating wave propagates 
Tnto the plasma  and t h e  wave does  not  penetrate a l l  t h e  way t o   t h e  cr i t ical  
dens i ty .  No h o t   s p o t   o r   r e f l e c t e d  wave appears,  and a l l  of t he  laser energy 
is absorbed. 

I n  summary, stationary-frozen-nonconducting  heating of a cool  plasma will 



V I .  APPLICATION TO A LINEAR DENSITY GRADIENT 

The so lu t ions   g iven   i n   t he  las t  sec t ion   can   be   eas i ly   ca lcu la ted   for  
a l i n e a r   d e n s i t y   g r a d i e n t ,  5 = y.  These r e s u l t s   f o r   t h r e e   d i f f e r e n t   v a l u e s  
of the  parameter a are shown i n  Figures 8,  9,  10. 

Figure 8 clear ly   demonstrates   the  heat ing wave moving i n t o   t h e  plasma 
I n  this case (a = 1000)  the  heating wave only  gets   about   halfway  to   the 
cr i t ical  densi ty   by  the end  of t h e  laser pulse .   In   Figure 9 (a = 4 )  the  
heating wave reaches  the c r i t i ca l  dens i ty   j u s t   be fo re   t he  end  of t h e  laser 
pulse ,  and a weak hot   spot  is  generated a t  t h e  c r i t i ca l  dens i ty .   In  
Figure  10 (a << 1)   t he   hea t ing  wave t r a v e l s   a l m o s t   i n f i n i t e l y   f a s t   i n  
t ravers ing  the  underdense  region and  hence i s  not shown. A st rong  hot   spot  
arises a t  t h e   c r i t i c a l   d e n s i t y .  

While Figures 8, 9 ,   10   g ive   t he   ana ly t i ca l   f ea tu re s  of t he   so lu t ions ,  
they are given i n  terms of dimensionless   quant i t ies  and do not  show c l e a r l y  
the  temperatures  and  other  conditions  that  are at ta ined.   Figures  11, 12 
a r e  summary p l o t s   f o r  laser wavelengths X. = 1 . 0 6 ~  and 1 0 . 6 ~   r e s p e c t i v e l y .  
The "maximum temperatures"  given are t h e  maximum temperatures  without  the 
hot   spot .   Natural ly ,  when a hot   spot   appears ,   there  w i l l  be  a much h o t t e r  
temperature i n  a very  local ized  region.  The "plasma length"  given is t h e  
thickness of t h e  plasma t h a t  i s  i r r a d i a t e d  by t h e  laser. This  thickness 
w i l l  be R for  the  simultaneous  heating case, and will be somewhat less f o r  
the  heat ing  case  (s ince  the wave does  not   t raverse   the whole  underdense 
reg ion) .  

It is  noted   tha t   the  10.61.1 laser hea ts   in   the   s imul taneous   hea t ing  
regime f o r  much smaller e l ec t ron   dens i ty   g rad ien t s   t han   fo r   t he  1.061.1 
laser, i .e . ,  a r e l a t ive ly   l ong  plasma may be in   the  s imultaneous  heat ing 
regime  under 1 0 . 6 ~   r a d i a t i o n   b u t   i n   t h e   h e a t i n g  wave regime  under 1.061.1 
r ad ia t ion .  It is  also  seen by comparing Figures 11 and  12 t h a t   t h e  tempera- 
tures  achieved are independent of t he  laser wavelength in   the   s imul taneous  
heating  regime. However, the  longer  wavelength  heating  produces  higher 
temperatures i n   t h e  wave heating  regime. 

It has  been  previously  noted  that   not a l l  t h e   r a d i a t i o n  is absorbed i n  
the  simultaneous  heating case b u t   t h a t  much is  l o s t   t o   r e f l e c t i o n .  It i s  
important  to know what f r a c t i o n  of energy i s  absorbed -- both from the  
standpoint of e f f i c i ency  and  from t h e   f a c t   t h a t   r e f l e c t e d   r a d i a t i o n  may 
damage the  laser. In tegra t ing   the   t empera ture   for  a << 1 (58) , over  the 
thickness of the  underdense  region,  the  fraction of energy  absorbed  can  be 
ca lcu la ted .   This   f rac t ion  is doubled  to  take  into  account  the  absorption 
of r e f l e c t e d   l i g h t ,  and t h e   r e s u l t  i s  

" Jabs 5 
J - 2$ a) (59) 
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which f o r  a l i n e a r   d e n s i t y  

J 
" - 1.72 
Jo 

These r e s u l t s  are shown i n  

gradient   reduces  to  

a 2/5 

Figure  13. 

VII. CONCLUSIONS 

Analytic  solutions  have  been  developed  for  the laser heating of a one- 
dimensional  plasma  under  the  assumption  that  the  plasma is  s t a t iona ry ,  non- 
thermally  conducting,  and  that   only  the  electrons are heated  ( the  ions  being 
frozen a t  t h e i r   i n i t i a l   t e m p e r a t u r e ) .  These  assumptions were found t o   b e  
reasonable   for  many cases of i n t e r e s t .   I n   t h e s e   c a s e s ,   t h e  laser pulse  is suf- 
f i c i en t ly   sho r t   t ha t   t he   p rocesses  of  plasma  motion,  thermal  conduction  and 
electron-ion  equi l ibrat ion  don ' t   have time t o  make a s i g n i f i c a n t   e f f e c t .  These 
assumptions  reduce  the  problem  (aside  from  equations  of state) t o  a p a i r  of 
equations; a radiative  transfer  equation  and  an  equation  for  the  temperature 
containing  an  energy  source term. These  equations were combined and  solved  for 
a l l  ranges of remaining parameter a by the  method of  matched  asymptotic  expan- 
s ions .  

The use of a one-dimensional  plasma w a s  motivated by the  need t o  make t h e  
mathematics  tractable. No real plasma is  s t r i c t l y  one-dimensional  but many 
plasma  geometries of i n t e r e s t  are nearly  one-dimensional and t h e   a n a l y t i c  re- 
s u l t s  of this  paper  can  be  applied  to  such plasmas with  reasonable  accuracy. 
An example  of thermonuclear   interest  is the  longitudinal  heating  of a column 
of  plasma tha t   has  a uniform  density  across  the column, such as might  be  found 
i n  a plasma  focus  or a theta  pinch.  Another example is the   r ad ia l   hea t ing  of 
such a column which is quasi-one-dimensional i f   the   absorp t ion   length  1 / ~ ~  is  
less than  the  radius  of t he  column. Such a plasma with a number dens i ty  of 
l o 1  '/cm3 heated by a longi tudina l ly  aimed laser of wavelength 1 0 . 6 ~   t o  a temper- 
a t u r e  of 10 Kev could  be  contained  with a magnet ic   f ie ld  of 3 megagauss (as  
might  be  developed i n  a plasma focus).  For  plasmas t h a t  are not   near ly  one- 
dimensional ,   the   resul ts  of t h i s   s tudy  are s t i l l  valuable  in  understanding 
q u a l i t a t i v e   r e s u l t s .  

The a n a l y t i c   s o l u t i o n  shows markedly d i f f e r e n t   b e h a v i o r   f o r   d i f f e r e n t  
ranges  of a. For  thick  plasmas  (corresponding  to a 1arge)the  response is 
charac te r ized  by a heating wave proceeding  into  the  plasma. Behind t h e  wave is 
a hot   near ly   t ransparent   plasma  being  i r radiated by t h e  laser. Ahead of t h e  
wave is an  unheated  opaque  plasma.  Physically,  the  motion  of  the wave corres- 
ponds to   the  heat ing  of   successive  layers  of opaque  plasma to  temperatures a t  
which  they become t ransparent  and   a l low  the   rad ia t ion   to   pass  on to   deeper  
l aye r s .  For a greater   than a c e r t a i n   d i s t i n c t   v a l u e  (depending  on the   dens i ty  
profile  but  always  on  the  order of  one),  the  heating wave f a i l s   t o   p e n e t r a t e  
t o   t h e  c r i t i ca l  dens i ty  by t h e  end  of t h e  laser pulse.  Then none  of the   rad ia-  
t i o n  is r e f l e c t e d  back to t h e  c r i t i ca l  density.  
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For smaller a, t he   hea t ing  wave reaches  the cr i t ical  dens i ty   before   the  
laser pulse  ends. A t  t h a t  t i m e ,  ref le .c t ion  occurs  a t  t h e  c r i t i ca l  dens i ty  
and some of t h e   l i g h t  i s  r e f l e c t e d .  Although the   hea t ing  is simultaneous 
once the  heat ing wave traverses the  underdense  region, i t  is by  no means 
uniform -- an  extreme  hot  spot i s  crea ted  a t  t h e  c r i t i ca l  densi ty   point .   For  
re la t ive ly   th in   p lasmas  (a somewhat less than  one)  the  heating wave t r ave r ses  
the  underdense  region  extremely  fast  and a l l  b u t   t h e  earliest s t ages  of the  
heating are "simultaneous. 

For a smaller than  the small parameter p3I2 , the   en t i re   hea t ing   process  
i s  simultaneous  with no heating wave a t  a l l .  The parameter p i s  a measure of 
t he   i n i t i a l   t empera tu re .  The e f f i c i ency  of the   hea t ing   drops   fur ther  as more 
of t he  laser energy i s  l o s t   t o   r e f l e c t i o n .  For a even smaller ( less   than p5/2), 
the   heat ing i s  so inef fec t ive   tha t   the   t empera ture  is  scarce ly  changed a t  a l l .  

It i s  c l e a r   t h a t   i n   t h e   p r e p a r a t i o n  of t h e  plasma to   be  heated,   the  tem- 
peratures  (or  other  conditions  sought)  can  be  optimized by proper  choice  of 
the  parameter a. For a given laser energy  per  unit  area and  wavelength, a 
depends on the   dens i ty   g rad ien t .  Hence, p rope r   t a i l o r ing  of t he   dens i ty  
gradient  beforehand w i l l  g ive   the   bes t   resu l t s ,   whether   tha t   be  maximum 
temperature  or maximum y i e l d  from a thermonuclear  reaction. 

The so lu t ion   found  in   th i s   paper  i s  only   for  a stationary,   non-thermally 
conducting,  frozen  ion  plasma. But t h e   s o l u t i o n s   f o r  a stationary  conducting 
plasma,  and a s ta t ionary  equi l ibr ium  plasma  (e lectron and ion  temperatures 
the  same) are c lose ly   re la ted .   In   the   case  of a conducting plasma, the  ef-  
f e c t  of conduction w i l l  be  simply  to smooth out   the  nonuniformit ies   in  tem-  
pe ra tu re   t ha t  are produced. In   the   case  of a plasma with  e lectron-ion 
equi l ibr ium,   the   e f fec t  of t h e   e q u i l i b r a t i o n  w i l l  be t o  divide  equal ly   the 
energy  between the   e l ec t rons  and i o n s .   I n   t h i s  case, t h e   r e s u l t  is almost 
i den t i ca l   t o   t he   f rozen   i on   so lu t ion   p re sen ted   i n   t h i s   pape r .  These two 
problems are in te res t ing   ex tens ions  of t he  work i n   t h i s  paper  and  form top ic s  
fo r   fu r the r   s tudy .  
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